Search results for "radiation induced attenuation"

showing 2 items of 2 documents

Overview of radiation induced point defects in silica-based optical fibers

2019

International audience; Silica-based optical fibers, fiber-based devices and optical fiber sensors are today integrated in a variety of harsh environments associated with radiation constraints. Under irradiation, the macroscopic properties of the optical fibers are modified through three main basic mechanisms: the radiation induced attenuation, the radiation induced emission and the radiation induced refractive index change. Depending on the fiber profile of use, these phenomena differently contribute to the degradation of the fiber performances and then have to be either mitigated for radiation tolerant systems or exploited to design radiation detectors and dosimeters. Considering the stro…

Materials scienceOptical fiberGeneral Physics and AstronomyPhysics::Optics01 natural sciencesParticle detectorlaw.inventionradiation induced attenuationlawoptical fber0103 physical sciencesIrradiation[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]Detectors and Experimental Techniques010306 general physicsDosimeterDopant010308 nuclear & particles physicsbusiness.industryAttenuationpoint defectSettore FIS/01 - Fisica SperimentaleCladding (fiber optics)lcsh:QC1-999optical propertie13. Climate actionsilicaOptoelectronicsbusinessRefractive indexfiber dopinglcsh:Physics
researchProduct

Radiation Response of Ce-Codoped Germanosilicate and Phosphosilicate Optical Fibers

2016

We report an experimental investigation on the effects of Ce-codoping in determining the radiation response of germanosilicate and phosphosilicate Optical Fibers (OFs) in the UV-Visible domain and up to doses of $1~\hbox{MGy}({\rm SiO}_{2})$ . We show that the addition of Ce strongly impacts the Radiation Induced Attenuation (RIA) of both types of fibers. In the first case the radiation induced losses increase, whereas in the second one decrease. By combining the online RIA measurements with the Electron Paramagnetic Resonance (EPR) ones, we are able to infer the basic microscopic mechanisms taking place under irradiation, which involve the cerium codopant and some of the known Ge-related o…

optical fiberNuclear and High Energy PhysicsMaterials scienceMGy irradiationAnalytical chemistrychemistry.chemical_element02 engineering and technologyRadiationgermanosilicate01 natural sciencesradiation induced attenuationIonlaw.invention020210 optoelectronics & photonicsRadiation sensitivityOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringphosphosilicateDosimetryIrradiationElectrical and Electronic EngineeringElectron paramagnetic resonanceNuclear and High Energy Physic[PHYS]Physics [physics]010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleDopingCeriumCeriumNuclear Energy and EngineeringchemistrycodopingbusinessIEEE Transactions on Nuclear Science
researchProduct